Switches for pressure gauges

APPLICATION

A pressure gauge with one or two contacts is an easy solution to have at the same time a permanent reading of process pressure with a survey of limit pressure over ranges. The pressure indication is done on a 100 mm or a 160 mm dial pressure gauge (up to 4 contacts). The contact is actuated as the pressure index come over.

FAST RESPONSE SWITCHES

The contact is actuated instantaneously; the hysteresis is short, about 0.5%. They may not be use when there are vibrations on the process or with aggressive ambient conditions. They must be used in a dry (not filled) pressure gauge case.

Technical features

Nominal voltage:
Release or priming current: Load current:
Switching power:
Contacts:
Accuracy:

250 V , as a maximum
0.7 A as a maximum
0.36 A as a maximum

10 W as a maximum
Ag $80 / \mathrm{Ni} 20$
0.5\% F.S.

MAGNET SWITCHES

They are suitable for most of applications, even with weak vibrations. The switch actuates with the help of a spring for a quick release. They must be used in a dry (not filled) pressure gauge case.

Technical features

Nominal voltage:
Release or priming current: Load current:
Switching power:
Contacts:
Accuracy:

250 V , as a maximum
1.0 A as a maximum
0.6 A as a maximum

30 W as a maximum
Ag 80 / Ni 20
from 2 to 5% F.S.

INDUCTIVE SWITCHES

These switches do not have electrical contact, as per standard DIN 19234. They have a greater life than the magnet switches and a better accuracy. They can be used with silicone filled cases. The output signal reflects the location of the pressure index inside the magnetic field of the switch.

Technical features

Load voltage:
Nominal voltage:
Consumption:
Accuracy:
With a relay RDN 11, connected, the intrinsic safety protection could apply for $1 \& 2$ zones on EEx ib II C T6, please request more information to us.

CODE NUMBERS FOR ORDERING

First, please ask for a quotation with the following details:

- Fluid, pressure range, temperature, and accuracy required
- Ambient characteristic, ATEX zone if any
- Status of the contact(s) and quantity of each
$\mathbf{1}=\mathrm{NC} / \mathbf{2}=\mathrm{NO} / \mathbf{M}=$ magnet switch / I = inductive switch
$\mathbf{S}=$ fast response switches - (See the examples on the next page)

EXISTING SWITCH MODELS

NO = "normally open"
NC = "normally closed"

FAST RESPONSE SWITCHES

S-1: Contact NO
S-2: Contact NC
S-11: First contact NO
Second contact NO
S-12: First contact NO
Second contact NC
S-21: First contact NC
Second contact NO
S-22: First contact NC
Second contact NC

MAGNET SWITCHES

M-1: \quad Contact NO
M-2: Contact NC
M-11: First contact NO Second contact NO

M-12: First contact NO
Second contact NC
M-21: First contact NC Second contact NO

M-22: First contact NC
Second contact NC

INDUCTIVE SWITCHES

1-1:	Contact NO
I-2:	Contact NC
I-11:	First contact NO
Second contact NO	
I-12:	First contact NO Second contact NC 1-21: I-22: First contact NC Second contact NO
First contact NC Second contact NC	

WIRING	INDEX MOVEMENT TO THE RIGHT	CODIFICATION and DEFINITION		
WITH ONE SWITCH				
	Status = NO (normally open)	S-1	M-1	1-1
	Status = NC (normally closed)	S-2	M-2	1-2
WITH TWO SWITCHES				
	First contact: Status = NO (normally open) Second contact: Status = NC (normally open)	S-11	M-11	I-11
	First contact: Status = NO (normally open) Second contact: Status = NC (normally closed)	S-12	M - 12	1-12
	First contact: Status = NC (normally closed) Second contact: Status = NO (normally open)	S-21	M-21	1-21
	First contact: Status = NC (normally closed) Second contact: Status = NC (normally closed)	S-22	M-22	1-22

